
25© Springer International Publishing Switzerland 2015
S.A. Fricker et al. (eds.), Requirements Engineering for Digital Health,
DOI 10.1007/978-3-319-09798-5_2

 Chapter 2
 Requirements Engineering: Best Practice

 Samuel A. Fricker , Rainer Grau , and Adrian Zwingli

 S. A. Fricker (*)
 Software Engineering Research Laboratory , Blekinge Institute of Technology ,
 Karlskrona , Sweden
 e-mail: samuel.fricker@bth.se

 R. Grau
 Zühlke Engineering AG , Schlieren , Switzerland
 e-mail: rainer.grau@zuehlke.com

 A. Zwingli
 SwissQ Consulting AG , Zürich , Switzerland
 e-mail: adrian.zwingli@swissq.it

 Abstract Many software solutions have failed because they did not meet stakeholder
needs. In response to this problem a massive amount of techniques were developed
to elicit stakeholder needs, to analyze the implications of these needs on the software,
to specify proposed software products, and to check acceptance of these proposals.
However, many of these techniques did not become industrial practice because they
were not practicable or ineffective when used in real-world projects. To obtain an
overview of what common practice is and to understand which techniques refl ect
best practice because they are particularly effective, we have surveyed a large number
of industry projects. Based on 419 valid answers, this chapter gives an overview of
commonly used requirements engineering techniques. It also shows which of the
techniques, when used in a software project, correlate with requirements engineering
success. The chapter concludes with recommendations for software projects and
future research to improve requirements engineering practice.

2.1 Introduction

 In 1995 the consultancy company Standish Group International published results of
an industry survey that showed that only 16 % of the software projects were suc-
cessful, 53 % were challenged, and 31 % complete failures [1]. Successful projects
were those that completed on time and budget and produced a software product with
all features and functions as initially specifi ed. The low success rates described in
the Standish report generated substantial attention by industry and politics.

mailto: samuel.fricker@bth.se
mailto: rainer.grau@zuehlke.com
mailto: adrian.zwingli@swissq.it

26

 The Standish survey pointed to software project practices that needed improve-
ment. According to the respondents, the most frequently stated factors that infl u-
enced project success were user involvement, executive management support, and a
clear statement of requirements. These factors show that requirements engineering
is crucial to achieve project success. User involvement is critical for building a soft-
ware that will be understood by the users, that will be used appropriately, and that
creates joy [2]. Management support is critical to align the software with the strategic
goals of the organization [3]. Clearly stated requirements contribute to a shared
understanding between the project team and the software product’s users, management,
and other stakeholders. The shared understanding reduces the risk of unsatisfactory
outcome and rework of project results [4]. Infl uenced by these insights, software
engineering practice matured over time. Thirty-two percent of the software projects
were successful according to the Standish survey published in 2009 [5].

 Even though many requirements engineering techniques exist for involving users,
for obtaining management support, and for achieving shared understanding, we lack
an understanding of whether these techniques make requirements engineering suc-
cessful. Some researchers believe that no technique would do and claim that good
requirements practices are neither suffi cient nor necessary [6]. The best we can say
today is that the techniques are used inconsistently: some techniques get used by
some projects but not by others [7 , 8]. Companies that care about requirements
engineering seem have a preference for Quality Function Deployment, prototyping,
Data Flow Diagrams, role playing, and decision trees [9]. However, we do not know
whether any of these techniques correlates with requirements engineering success,
thus should be used systematically.

 This chapter intends to develop an understanding of what practice makes require-
ments engineering successful by reporting the results from an own large-scale
industry survey. The survey investigated whether the use of requirements engineer-
ing techniques differed between projects with successful and unsuccessful require-
ments engineering. The results show that a few techniques indeed correlated with
success. In addition, also the ability to apply a broad variety of requirements
engineering techniques is important. These results imply that best practice would
be to utilize the few effective techniques and pragmatically select complementing
techniques that suit well the type of software being developed and the situation that
requirements engineering is confronted with.

 The remainder of this chapter is structured as follows. Section 2.2 gives an over-
view of requirements engineering state of the art that was studied in the industry
survey. Section 2.3 describes the survey methodology. Section 2.4 characterizes the
projects that have responded to the survey, gives an overview of the requirements
engineering practice of these projects, and shows the correlation of requirements
engineering practice with success. Section 2.5 discusses the obtained results, gives
recommendations for practice, and suggests implications for research. Section 2.6
summarizes and concludes.

S.A. Fricker et al.

27

2.2 Requirements Engineering State of the Art

2.2.1 Requirements Engineering Techniques

 There is a long tradition of research and practice in requirements engineering. One of
the early infl uential works describes requirements engineering as inquiry [10].
During an inquiry the requirements engineer asks questions about a future software
product to stakeholders and turns the obtained answers into a specifi cation.
While doing so, new questions emerge that are posed again to the stakeholders to initiate
the next inquiry.

 Since these early days, a large number of techniques have been investigated to
advance requirements engineering state of the art [11]. Still, Potts’s inquiry remains
a good model of how to think of requirements engineering in a software project.
Today, a requirements engineer is expected to elicit needs and expectations from
stakeholders, to model and analyze the impact of these inputs on the system together
with the development team, and to check proposed implementations for acceptance
by the stakeholders [12]. Once both the stakeholders and the development team
agree, the requirements are used to steer development and, upon release of the solu-
tion, check whether the developed product fulfi ls the agreement. If the inquiry is
done well, one can observe that a shared understanding emerges, requirements sta-
bilize, and the stakeholders become satisfi ed [13 , 14].

 During elicitation the requirements engineer aims at understanding the project
vision and constraints, the context that the product will be deployed into, and the
stakeholders that will need to accept the product [15 , 16]. Such requirements elici-
tation results in an overview of users, external systems, and other stakeholder
viewpoints and a description of their respective background, interests, and expecta-
tions. A large number of techniques are known to elicit such information about the
system requirements [17 – 19]. Table 2.1 gives an overview of selected elicitation
techniques.

 During analysis the requirements engineer aims at understanding how the
requirements will be implemented by the software system [30], how they will be
considered in the development plan [31], and how they will be used for the testing of
the system [32]. Requirements analysis typically results in one or more prototypes,
a defi nition of project scope or release plan, and a requirements specifi cation for the
system. Table 2.2 gives an overview of selected analysis techniques, Table 2.3 of
planning techniques, Table 2.4 of relevant requirements types, and Table 2.5 of
specifi cation techniques.

 During requirements checking, the requirements engineer checks that the right
approach has been selected for fulfi lling the vision and achieving the system goals
and that the system will be accepted by the stakeholders. Requirements checking
initiates a new inquiry cycle if the checked requirements turn out to be not good-
enough. Requirements checking marks the agreement of the stakeholders on

2 Requirements Engineering: Best Practice

28

 Table 2.2 Selected system analysis techniques

 Technique Description

 Domain-driven
development

 Specifying the concepts of relevance in the context the system will be
deployed into that are to be implemented or respected by the system [33].

 Formal specifi cation Use of mathematical or formal-logic expressions to enable automated
checking of completeness consistency, and correctness [34].

 Informal Modeling Sketching a model of something of relevance to refl ect and discuss how
the parts of that thing interrelate [35].

 OOA Specifying the structure, functionality, and behavior of the system
usually with the object-oriented analysis language UML [36].

 Prototyping Paper- or tool-based approximation of the end-systems to increase the
tangibility and authenticity of the planned system [37].

 Quality checks Checking whether the system fulfi ls its goals and whether functionality
and quality are adequate and needed [38].

 SA Specifying the structure, functionality, and behavior of the system with a
structured analysis language [39 , 40].

 Table 2.1 Selected requirements elicitation techniques

 Technique Description

 Archaeology Analysis of existing systems to understand their functionality, quality, and
usage [20].

 Creativity The generation and selection of ideas to innovate or solve a diffi cult problem
[21 , 22].

 Data mining Search and fi ltering of requirements databases to identify relevant knowledge
about stakeholder needs [23].

 Interview Meeting between a requirements engineer and a stakeholder to discuss topics
of relevance for the system [24].

 Introspection Use of domain knowledge in combination with refl ection and empathy to base
requirements on experience [25].

 Observation Study of system use, possibly in the target environment and by real users, to
understand usage processes and strengths and weaknesses of a current
system [26].

 Questionnaire-
based survey

 Paper or electronic form with questions and space for answers distributed to
stakeholders to obtain an overview of stakeholder opinion [27].

 Reuse Use of existing specifi cations to avoid reinvention of requirements that already
are adequate [28].

 Workshop Meeting between a requirements engineer and stakeholders to reach agreement
between the workshop participants [29].

 contents and scope of the development project if the checking has been successful.
Table 2.6 gives an overview of selected checking techniques.

 The inquiry cycle leads to a dialogue between stakeholders and development
team that can be seen as a negotiation [64]. The negotiation results in an agreement
between the stakeholders and the development team about the product to be developed.
This agreement, represented by the approved requirements specifi cation, is then

S.A. Fricker et al.

 Table 2.3 Selected requirements planning techniques

 Technique Description

 Business
case

 Evaluating whether a set of requirements has to good return-of-investment and
should be included into project scope [41].

 Prioritizing Ranking the requirements to obtain an order of how they shall be addressed by the
project work [42].

 Release
planning

 Defi ning the contents of one or more releases to defi ne the scope of the software
system [43].

 Road
mapping

 Coarse-grained, long-term planning to agree with stakeholders and suppliers for
how the software system shall evolve [44 , 45].

 Triage Filtering the requirements to determine what requirements are relevant and what
requirements are not [46].

 Vision Defi ning the problem that is addressed, the key idea of the solution, and how the
solution improves state of the art to align the work of developers and stakeholders [47].

 Table 2.4 Selected requirement types

 Type Description

 Behavior Behavior is a sequence of states that determine how a system, artifact, or class
reacts to events [48].

 Formal
property

 A formal property can be tested for correctness, completeness, and consistency
with automated tools [49].

 Function Function is a reaction to inputs or an action of a system [50].
 Glossary A glossary defi nes terms, abbreviations, acronyms, synonyms, and homonyms [12].
 Interface An interface connects a system with its environment. Typical interfaces are user

interfaces [51] and interfaces to other software systems [52].
 Process A process is a series of actions or operations implemented by people,

organizations, or software to achieve a goal [53].
 Quality Quality is a characteristic of a software system such as performance, reliability,

security, compatibility, portability, usability, and maintainability [54].
 Scenario A scenario is a story of how users and systems interact to achieve a goal [55].
 Stakeholder A person, group, or organization who gains or loses something with the software

[56]. May be denoted agent [57] or actor [36].
 Structure Structure refers to entities or systems with their attributes and relationships [36].

 Table 2.5 Selected specifi cation techniques

 Technique Description

 i* or
KAOS

 Specifying agents, goals, and formal properties with formal languages to enable
reasoning about goals and goal-achievement [57].

 Natural
language

 Specifying requirement with words and sentences to achieve specifi cation fl exibility
and understandability. Language templates may be used to improve precision [58].

 SA
diagrams

 Specifying functions, processes, structure, and behavior with one of the graphical
notations proposed by structured analysis to achieve precision and make structure
visible.

 Tables Specifying concepts to achieve an understanding of the terminology [59] and or
rules for how conditions affect system behavior [60].

 UML
diagrams

 Specifying functions, scenarios, processes, rules, relations, behavior, and
deployment with graphical notations from the Unifi ed Modeling Language to
increase precision and show structure.

 User
screens

 Specifying the user interface with paper or tool-based mock-ups to increase the
tangibility and authenticity of the planned system.

30

baselined and used to manage the development project and the release of the developed
product. Table 2.7 gives an overview of selected requirements negotiation tech-
niques and Table 2.8 of requirements management techniques.

2.2.2 Requirements Engineering Success

 For evaluating requirements engineering practices, one needs to understand how
to measure requirements engineering success. The most thorough study that
answered this question was a survey that tested 32 indicators with 30 requirements

 Table 2.7 Selected requirements negotiation techniques

 Technique Description

 Confl ict
management

 Discovering and resolving confl icts among stakeholders and between
stakeholders and development team [12].

 Handshaking The review and discussion of implementation proposals to align the planned
implementation of the software system with stated and unstated stakeholder
needs [65].

 Negotiation
analysis

 Analyzing possible negotiation outcomes and selecting a value-creating, fair
agreement [66].

 Power
Analysis

 Analyzing power and infl uence of stakeholders and planning how to interact
with them[67].

 Prioritizing Ranking the requirements to obtain an order of how they shall be addressed by
the project work [42].

 Strategy
alignment

 Aligning requirements with company strategy, for example through explicit
traceability [3].

 Variant
analysis

 Analyzing and selecting alternative features or ways of solving a problem [68].

 Win-win
negotiation

 Structured, possibly tool-supported approach to identifi cation of options for
agreement and selection of the appropriate option [69].

 Table 2.6 Selected checking techniques

 Technique Description

 Automated
checking

 Testing a formal specifi cation of the system to detect confl icting and missing
requirements [61].

 Inspection Review of the requirements specifi cation by all relevant stakeholders with a
formal process that is effective at discovering problems and leads to in-depth
understanding of the specifi cation [62].

 Peer review Feedback by one or more requirements engineers to support and assure the
quality of the specifi cation work.

 Prototype
review

 Discussion and use of the prototype, for example in a role-play, to explore
uses and check acceptance of the system.

 Simulation Approximation and review of the behavior of the system with an appropriate
tool to check correctness of the behavior [63].

 Walk-through Effi cient review of the requirements specifi cation by discussing the
requirements specifi cation in their sequence with stakeholders.

S.A. Fricker et al.

31

 Table 2.8 Selected requirements management techniques

 Technique Description

 Baselining Versioning requirements and specifi cations and communicating these as
a baseline to stakeholders [70].

 Change management Controlled process of collecting change requests, analyzing impact, and
deciding about the change [71].

 Process measurement Measuring requirements engineering and implementation effi ciency, for
example in the form of value stream analysis [72].

 Progress tracking Monitoring the life cycle of requirements from discovery to selection,
implementation, and release [73].

 Report generation Generation of reports, such as requirements specifi cations, from a
database of requirements.

 Traceability
management

 Maintaining relationships between requirements and possibly other
artifacts to express dependencies, confl icts, and synergies [74].

 Table 2.9 Success measurements for requirements engineering [75]

 Quality of RE service Quality of RE products

 Business-technical alignment : fi t
with strategy, ability and willingness
to make business changes, and
management support.

 Quality of cost–benefi ts analysis : completeness and
coverage of cost–benefi t analysis, new benefi ts created
by the new solution, and suffi cient accuracy of cost
estimates.

 Stakeholder acceptance : awareness
of business changes, extent of
consensus, willingness to defend
solution, and relationship to users.

 Argumentation of impact : diagnosis of existing solution,
traceability of supported processes to problem to be
solved and to system goals, and traceability of strengths
and weaknesses of new solution to replaced solution.

engineering experts [75]. It showed that requirements engineering success can be
measured with quality of requirement engineering service and quality of require-
ments engineering products . Table 2.9 gives an overview of the indicators.

 The quality of requirements engineering service refers to the effects a requirements
engineer wants to achieve. These concern the alignment of the software product
with business objectives and the alignment of it with stakeholder needs and expecta-
tions. Such alignment can be checked by asking the concerned stakeholders of
whether they agree that system will deliver the desired impacts.

 The quality of requirements engineering products refers to the work results
delivered by the requirements engineer. These should include a comprehensive
cost–benefi t analysis and a description of impact with detailed traceability to
supported processes, system goals, and the replaced solution. Such work results are
tangible and can be easily inspected if they are presented in the form of a require-
ments specifi cation.

 In this chapter we use El Emam and Madhavji’s success measurements to inquire
what requirements engineering goals were important and whether these goals were
achieved. This way of assessing the quality of requirements engineering service and
products allows taking into consideration the many possible variations of what is
important in given projects. It allows the respondents to judge whether requirements
engineering was successful according to their own specifi c contexts.

2 Requirements Engineering: Best Practice

32

 El Emam and Madhavji’s success measurement have the advantage of being measur-
able immediately when requirements engineering is concluded. However, they fall short
in capturing the ultimate objective of requirements engineering. No measurement has
been proposed to assess whether the specifi ed system will be successful. For that reason,
we extend the measurement framework outlined in Table 2.9 with the additional dimen-
sion of requirements engineering outcome. In the survey we thus ask the respondents
whether the specifi ed product met the goals the product was conceived for.

2.3 Industry Survey

 We investigated the use of requirements engineering techniques and how much they
contributed to requirements engineering success with an online survey [76]. We distributed
an online questionnaire to people involved in software projects in an attempt to
answer the following main research questions.

 – RQ1: What requirements engineering techniques are used in software projects?
 – RQ2: What are the goals pursued in requirements engineering?
 – RQ3: Which requirements engineering techniques correlate with requirements

engineering success?

 The answers to RQ1 show how frequently each of the requirements engineering
techniques is used, thus allows us to say what common practice is. Besides bench-
marking practice, these results allow judgment whether techniques that were investi-
gated in research were successfully transferred or not. The answers to RQ2 tell us
what requirements engineers try to achieve with their work and with the systems they
specify. The results show the priorities that are set for requirements engineering work.
The answers to RQ3, fi nally, tell us what requirements engineering techniques matter
most because they are associated with success more than other techniques do.

 We built the questionnaire by fi rst basing it on requirements engineering state of
the art [11 , 12] and then adjusting it based on suggestions from practitioners with
broad overview on the software industry. A focus group with experienced practitio-
ners evaluated adequacy, coverage, and understandability of the questionnaire. We
then tested and further improved the form by letting respondents fi ll it in and give
feedback in interviews.

 To know who was answering, the questionnaire asked respondents to characterize
their most recent software project. To answer RQ1, the questionnaire asked multiple-
choice questions about requirements-related inquiry, specifi cation, and management
techniques in the characterized project. To answer RQ2, it asked multiple- choice
questions about the goals of requirements engineering in the project and of the speci-
fi ed product. To answer RQ3, it asked questions about the requirements engineering
success. Free-text areas allowed expanding or qualifying the answers.

 The theoretical population of the survey was all software projects that were
recent when the survey was administered in 2012. The sampling frame was the
industrial contacts of our partners in academia and industry. To increase the reach of

S.A. Fricker et al.

33

the survey we encouraged subjects to recommend the questionnaire to their own
contacts.

 Six hundred twenty-fi ve respondents, about 10 % of the invited persons, answered
the online questionnaire. Filtering for completeness and plausibility reduced the
data to 419 valid answers. This number of answers makes this requirements engi-
neering survey by far the largest ever published. The obtained number of samples
allowed describing requirements engineering practice with a margin of error smaller
than ±5 % for 95 % confi dence.

 We answered the research questions with statistical analysis. Descriptive statistics
of proportions were used for answering RQ1 and RQ2. The difference of propor-
tions test, a variation of the independent samples t test, was used for answering
RQ3. To control the accumulation of type I error, Holm’s step-down method [77]
was used to prune the t test results for statistical signifi cance. Wilcoxon’s rank-sum
test, fi nally, allowed us to explore an additional angle to answer RQ3, whether the
number of requirements engineering practices that are used in a software projects
would correlate with success.

2.4 Requirements Engineering Practice and Success

2.4.1 Responding Projects

 A diverse mix of software projects answered the survey. Figure 2.1 gives an over-
view of the answering projects, the kinds of software products they developed, and
the companies they belonged to.

 Many projects were performed at large companies in Switzerland and developed
information systems. This distribution is consistent with the Switzerland-oriented
contact networks we used for soliciting responses. The key employer in this country
is the service sector with IT departments that produce information systems.

 A wide spread of industries were addressed with the developed products.
 Thirty- fi ve responses, 8 % of all responses, were given by projects that developed
products for health care. Thus the results refl ect practice across industries and are
not specifi c to one of them, for example health care. Product novelty was relatively
evenly spread.

 A majority of the projects were bespoke and developed tailor-made solutions.
The projects used a sequential, incremental, or hybrid development process.
Only few did research or used a process like the Spiral model that is designed for
experimentation. The long duration of the projects may be explained by the prolonged
relationship that IT departments have with the business units they support. The same
relationship can also explain the bespoke nature of the projects. Information systems
developed for business units are used by a predetermined set of users that can be
actively involved into the requirements engineering process.

2 Requirements Engineering: Best Practice

34

2.4.2 Common Practice

 Our data shows that requirements engineering was widely established. However, there
was not one way of doing requirements engineering. While only few of the techniques
are employed by almost all projects, e.g., workshops, many of the techniques are used
by some of the projects only. This result indicates a wide variety of how requirements
engineering is done. Figure 2.2 gives an overview of how frequently each require-
ments engineering practice was used.

 Almost every project elicited requirements. The projects tended to do with
stakeholder workshops, by studying existing systems, or by reusing specifi cations.
Workshops dominated requirements elicitation practice. Only few projects used
techniques like observation, ethnography, surveys, or data mining. These tech-
niques are thus used in special situations only.

 Almost every project planned the product to be developed, often by prioritizing
requirements. Often a mix of planning techniques was used. No technique was
dominant.

 Almost every project analyzed requirements. Often a mix of informal modeling,
prototyping, and object-oriented analysis was used. No analysis technique was
dominant. Historically important techniques like structured analysis, quality function
deployment, and decision trees or specialized techniques such as domain-driven
development were uncommon.

Research 32 8% Banking, Finance 98 23% < 10 23 5%
Product, Platform 87 21% Automotive, Transport 54 13% 10-49 39 9%

Bespoke 237 57% Software, IT 51 12% 50-249 42 10%
Tender 42 10% Government, Military 40 10% 250-4499 144 34%

Other 21 5% Healthcare, Medical 35 8% >= 4500 168 40%
Insurance 31 7% n/a 3 1%

Prototyping 23 5% Telecommunications 31 7%
Evolutionary 39 9% Manufacturing, Supply 22 5% Europe 368 88%
Incremental 113 27% Other 57 14% Switzerland 248 59%

Hybrid 104 25% Germany 69 16%
Sequential 135 32% Information System 260 62% Other Europe 51 12%

Other 5 1% Software-Intensive 62 15% Americas 26 6%
Engineering 28 7% Asia-Pacific 25 6%

< 4 54 13% Other 69 16%
4-9 107 26%

10-19 89 21% Completely New 149 36%
20-49 84 20% New Features or Use 107 26%
>= 50 82 20% Changed Technology 79 19%

n/a 3 1% Maintenance 84 20%

< 4.5 27 6%
4.5-9 97 23%
9-18 119 28% ***: n/a was a possible answer,

>= 18 165 39% light color: sub-categories,
n/a 11 3% "Other": answers with less than 5% frequency.

Innovation

Type

Location

Project
Industry (application domain)

Company
Size (number of employees)***

Product

Duration (calendar months)***

Category

Process (Lifecycle Model)

Size (number of staff)***

 Fig. 2.1 Demography of projects that responded to the survey

S.A. Fricker et al.

35

 Almost every project specifi ed requirements. A majority specifi ed functionality,
quality, use scenarios, and user interfaces of intended solutions. Functional require-
ments dominated. Concepts commonly used for formal reasoning, such as agents,
goals, and formal properties, were rare. For specifying the requirements, natural
language dominated as the notation. Natural language was often complemented
with UML diagrams. The use of other diagram types, user screens, and informal
drawings varied. Formal-logic and goal-oriented languages like i* or KAOS were
almost never used.

 The frequency of notations that match requirements analysis techniques was
inconsistent with requirements analysis practice. Object-oriented and structured
diagrams were much more common than the use of corresponding analysis tech-
niques. User screens were much less frequently documented than prototypes cre-
ated. Formal specifi cation languages were used as rarely as the corresponding
formal methodology.

 Almost every project stored requirements. Requirements documents were the
most common type of storage. The use of spreadsheets, requirements databases, and
modeling tools varied. Drawing tools, wikis, and cards for capturing requirements
backlogs were uncommon.

 Almost every project checked requirements. Projects tended to prefer manual
requirements checking, preferably with rigorous inspections. Simulation and auto-
mated formal checking were uncommon.

 Almost every project negotiated requirements. To reach an agreement on require-
ments, most common was requirements prioritization. Uncommon were analytical

Total 405 97% Total 414 99% Total 384 92% Total 407 97% Total 404 96%
Reqs. Prioritizing 252 60% Workshops 328 78% Informal Modeling 210 50% Functional 343 82% Natural Language 374 89%
Release Planing 209 50% Feedback 183 44% Prototyping 169 40% Scenarios 263 63% Use Cases 248 59%

Triage 206 49% Analysis 161 38% OOA 166 40% Quality 240 57% Informal Text 219 52%
Business Case 202 48% Design 149 36% Quality Checks 107 26% User Interfaces 238 57% User Stories 111 26%
Roadmapping 174 42% Creativity 142 34% SA 51 12% Processes 183 44% Shall Templates 94 22%

Vision 165 39% System Archeology 292 70% DDD 34 8% Rules 173 41% Other 37 9%
Other 1 0% Reqs. Reuse 270 64% Other 36 9% Softw. Interfaces 157 37% UML Diagrams 245 58%

Copy/Paste 159 38% Structure 140 33% Use Case Diagr. 188 45%
Total 382 91% Delta Specs. 121 29% Total 391 93% Glossary 132 32% Activity Diagr. 128 31%

Reqs. Prioritizing 252 60% Standard Reqs. 81 19% Inspection 266 63% Behavior 95 23% Class Diagr. 114 27%
Handshaking 209 50% Variability 42 10% Walk-Through 175 42% Stakeholders 71 17% Sequence Diagr. 89 21%

Conflict Mgmt. 167 40% Modeling 3 1% Peer Review 161 38% Formal Properties 24 6% State Machines 54 13%
Strategy Alignment 125 30% Interviews 265 63% Prototype Review 143 34% Other 26 6% Other 2 0%

Power Analysis 76 18% Document Analysis 211 50% Checklist 89 21% Processes 208 50%
Win-Win 45 11% Creativity 183 44% Simulation 33 8% Total 405 97% Activity Diagr. 128 31%

Variant Analysis 31 7% Workshops 142 34% Autom. Checking 30 7% Document 265 63% DFD 111 26%
Negotiat. Analysis 29 7% Idea Castings 43 10% Other 4 1% Spreadsheet 149 36% BPMN; BPML 37 9%

Idea Databases 38 9% Database 146 35% Other 9 2%
Total 341 81% Introspection 118 28% Modeling Tool 135 32% SA Diagrams 177 42%

Change Mgmt. 243 58% Observation 87 21% Drawing Tool 61 15% DFD 111 26%
Baselining 196 47% Surveys 50 12% Other 4 1% ERD 94 22%

Traceability 167 40% Data Mining 25 6% STD 62 15%
Progress Tracking 106 25% Other 12 3% User Screens 151 36%

Report Generation 60 14% Informal Drawings 139 33%
Process Analytics 55 13% Tables 67 16%

Other 3 1% Other 19 5%

Multiple answers were possible, light color: sub-categories, "Other": answers with less than 5% frequency

Requirements Management

Management
Product Planning Elicitation Requirement TypesAnalysis

Storage

Checking

Inquiry Specification

Stakeholder Negotiation

Notations

 Fig. 2.2 Common requirements engineering practice

2 Requirements Engineering: Best Practice

36

techniques such as power, variant, and negotiation analysis, and advanced tech-
niques such as win-win negotiations.

 Four out of fi ve projects managed the requirements. This means at the same time
that one out of fi ve projects did not use the requirements once they were inquired.
Requirements management tended to focus on the handling of requirements. Most
common was change management. Requirements were rarely used for analyzing
project progress, for reporting, or for measuring the development process.

 Overall, the large variety of techniques indicates that there was no one-size-fi ts-
all in requirements engineering practice. Still, there are a few practices that could
be seen in a large majority of projects. These include the use workshops to discuss
requirements with stakeholders, the specifi cation of functional requirements, and
the use of natural language for specifi cation. Among the established methodolo-
gies, object-oriented analysis and specifi cation appears to be widely adopted,
although not dominating. The older counter-parts, for example structured analysis,
were much less important in comparison. Extremely rare were formal techniques.
Even- though they are widely researched, they have hardly found their way into
current practice.

2.4.3 Requirements Engineering Success

 The data from the responding projects showed that there was no dominant way of
judging requirements engineering success. Figure 2.3 gives an overview.

 The most important requirements engineering goals were shared understanding
between the project team and its stakeholders and good quality of the requirements
specifi cation. These two objectives of requirements engineering were often comple-
mented with the need for a clear scope for the development, for using little time and

Total 419 100% Total 419 100%
Shared Understanding 214 51% Productivity 228 54%

Specification Quality 197 47% Effectiveness 156 37%
Clear Scope 160 38% Compliance 143 34%

Efficiency 155 37% Satisfaction 137 33%
User Satisfaction 145 35% Flexibility 86 21%

Timeliness 139 33% Safety 73 17%
Fit of Solution 94 22% Environment 7 2%

Estimation Reliability 65 16% Other 8 2%
Architecture Quality 58 14%

Cost/Benefit Analysis 26 6%
Other 4 1%

Requirements Engineering Goals Software Product Goals

 Fig. 2.3 Success factors for requirements engineering process and outcome

S.A. Fricker et al.

37

resources for requirements engineering, for satisfying the users, and for delivering
the requirements engineering work results in time.

 The most common goal pursued by the software products that were specifi ed with
the requirements was productivity improvement. This goal was complemented by a
variety of goals that included effectiveness, e.g., to enable users to do things they
could not do before, compliance with laws and regulations, and satisfaction of users
and stakeholders with the product. Important societal topics, like environmental or
societal challenges, were rarely considered to be a goal of the software product.

 Figure 2.4 shows how many projects were successful and how many have not
been successful when judged according to the criteria summarized in Fig. 2.3 . A bit
more than half of the projects judged that they fulfi lled the requirements engineering
goals. A bit less than half judged they did too little. Almost none stated they would
have done too much. While positive and negative satisfaction with requirements
engineering were rather balanced, product goal achievement was a sharp success.
About nine out of ten of the specifi ed products were judged to be a success. Only
few were considered failures.

 These success rates appear to contradict the success rates identifi ed in other studies.
In comparison, Standish presented 32 % project success rate in 2009 by taking into
consideration scope, time, and budget adherence [5]. The staggering success rate of
92 % for product goal achievement we observed thus says that while the project
may have been problematic, the outcome of the project was not. Also, 55 % satisfac-
tion with the requirements engineering experience is signifi cantly larger than then
32 % project success rate. This may indicate that requirements engineering practice
had matured and was less problematic than other disciplines.

2.4.4 Success-Correlating Practice

 To identify effective requirements engineering practice we correlated technique use
with requirements engineering success. The result of this analysis indicates the
techniques that are used in projects with successful requirements engineering sig-
nifi cantly more often than in projects that did not meet requirements engineering
goals or produced products that did not achieve their goals. Whether practice use
leads to success or whether good projects select these practices cannot be concluded
from these results and needs to be investigated in future research.

Total 419 100% Total 419 100%
Too little 181 43% Rather Yes 385 92%

Just enough 229 55% Rather No 34 8%
Too much 9 2%

Achievement of RE Goals Achievement of Product Goals

 Fig. 2.4 Requirements engineering success

2 Requirements Engineering: Best Practice

38

 Our survey data showed 221 projects with successful requirements engineering
and 189 failures according to our success criteria. Only three techniques correlated
with requirements engineering success with p < 0.05 signifi cance after pruning the
results with Holm’s step-down method to remove false positives. None of the other
techniques correlated signifi cantly with success, and no technique correlated
negatively. Figure 2.5 gives an overview.

 Scenarios are exemplary sequences of system usage [55]. In requirements engi-
neering, they are used to describe concrete stories of how users and external systems
interact with the system under consideration to achieve goals that are of value to
the user. Scenarios make the functionality of the system concrete and thus enable
users to judge whether they feel to be able to use the system meaningfully and
whether they like it. Scenarios also allow capturing interaction design knowledge
from user experience experts. A common format used to document scenarios is the
use case template [78].

 Business cases are used to document predicted fi nancial results and other business
consequences for one or multiple alternative ways of how a product is built,
deployed, and maintained [41]. The business case planning work and results that are
obtained with it are determinant for selecting what is in the product scope and what
not and for evaluating whether a chosen scope is attractive for the customer of the
project. The understanding of a business case allows to stop work on a product that
does not make sense or to re-scope the product to make it more attractive.

 Workshops create an effi cient, controlled, and dynamic setting for quickly elicit-
ing, prioritizing, and agreeing on requirements [29]. The discussion of requirements
by the critical stakeholders makes a requirements workshop to be one of the most
effi cient techniques to perform inquiry and to achieve shared understanding. No other
technique allows exposure and resolution of confl icts between stakeholders so effi -
ciently. The same applies for discovery and resolution of misunderstandings.

 We also studied whether the number of techniques used and the number of
requirement types documented in a project correlates with requirements engineering
success. Figure 2.6 shows the distributions with box plots.

 According to the Wilcoxon’s rank-sum test, successful projects use a signifi cantly
larger number of requirements engineering techniques and specify a signifi cantly
larger number of requirement types than unsuccessful ones.

 Again, the causes for these correlations should be investigated with future
research. A hypothesis that should be tested is whether there is a large variety of
project context that require more techniques to be used. The observed large variety

160 72%
100 53%
126 57%

71 38%
189 86%
133 70%

Business Case

Scenarios

Workshops

 Fig. 2.5 Techniques that
correlated with requirements
engineering success (upper
rows : successes, lower rows :
failures)

S.A. Fricker et al.

http://www.springer.com/978-3-319-09797-8

